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An analysis was performed to establish a relationship between specific damping capacity
and loss angle for materials with arbitrary loss angle. The motivation for this work is that
the usual relationship is only valid for low loss materials and leads to some confusion when
the specific damping capacity is greater than one. In this paper, two equations for specific
damping capacity are derived that are valid for all values of loss angle. One equation uses
the usual definition of specific damping capacity as dissipated energy per cycle divided by
maximum stored energy. The other equation defines specific damping capacity as dissipated
energy per cycle divided by work done per cycle. The latter equation has the desirable
property of varying between zero and one. The analysis done in the time domain is extended
to include analysis of hysteresis curves as well.
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1. INTRODUCTION

The purpose of this paper is to establish the relation between specific damping capacity
and loss angle for materials of arbitrary loss angle. The motivation for this work is that
the usual relation between these variables is only valid for low loss materials [1–10].
Because the exact relation is unavailable, the range of validity of the low loss
approximation is not known. Having gone through the analysis to determine the relation
for arbitrary loss angle, it becomes apparent that the definition for specific damping
capacity is not the most useful and an alternate definition is proposed. The analysis carried
out in the time domain is then applied to the evaluation of stress–strain hysteresis loops.

A common metric of energy loss in a dynamic mechanical experiment is the loss factor,
which is defined as tan d, where d is the loss angle by which strain lags stress. This definition
is based on viewing stress and strain as complex variables, leading, for example, to a
complex shear modulus, G*=G'+ iG0, where the angle in the complex plane between loss
modulus, G0, and storage modulus, G', is d so that tan d=G0/G'. Experimental
measurements in the time domain generally yield the loss angle (or loss factor). The
presentation here will specifically consider only shear deformation though the extension
to other modes of deformation is straightforward.

Another metric of energy loss is the specific damping capacity, DW/W, which is not
measured directly but determined through a relationship to loss angle. DW is the total
energy dissipated per cycle. The meaning and intention of W is not so clear. The intention
is to evaluate the maximum stored (elastic) energy but various approximations are used.
All of the approximations assume that the loss angle is small. The most common
approximation is the one given, for example, by Read and Dean [4],

DW/Ws 1 2p tan d, d�1, (1)
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where the subscript on W will be used here to distinguish this stored energy definition with
another definition proposed later. Zener [1] used a slightly different approximation and
obtained

DW/Ws 1 2p sin d, d�1. (2)

For small d, equations (1) and (2) are nearly identical.
One purpose of this paper is to eliminate the restriction of small loss angle from

equations (1) and (2) by defining specific damping capacity for arbitrary d. A second
purpose of this paper is to propose a new definition of specific damping capacity in terms
of the work done per cycle (Wd ) rather than the maximum work stored. As described
below, this new definition is more intuitively obvious and has the advantage that the
quantity DW/Wd is a fraction that can never be greater than one.

2. SPECIFIC DAMPING CAPACITY FOR ARBITRARY d

Consider a linear material subjected to low amplitude, time harmonic shear stress of
maximum amplitude s0 and frequency v. The steady state stress has the form

s= s0 sin (vt) (3)

Some of the stressing energy is dissipated in the form of heat. The resulting shear strain
lags behind the stress by a phase angle d such that

g= g0 sin (vt− d), (4)

where g0 is the maximum shear strain amplitude. The phase angle d is known as the shear
loss angle. For an ideal elastic material, no energy is converted to heat and d=0. The
larger d becomes, the greater is the amount of energy converted to heat. For a purely
viscous material, all the energy is converted to heat and d= p/2 [11].

Work per unit volume can be calculated from the integral of the instantaneous stress
times the infinitesimal strain

W=g
b

a

s dg, (5)

where the limits of equation (5) depend on the particular problem. When stress and strain
are harmonic functions, it is convenient to express W as an integral in the time domain

W=g
b

a

s(t)
dg(t)
dt

dt, (6)

where the integrand (dW/dt= s(t) dg(t)/dt) is the instantaneous rate of doing work.
Substituting equations (3) and (4) into equation (6) yields

W=
s0g0v

2 g
b

a

[cos d sin (2vt)− sin d cos (2vt)+ sin d] dt. (7)

It is instructive to plot the integrand of equation (7), instantaneous work, along with the
associated stress and strain (equations (3) and (4)) as functions of time. The steady state
results for a typical cycle are shown in Figure 1 for the case of a low loss material, d=0·05.
As required by equation (7), dW/dt oscillates at twice the frequency of the stress.
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The dW/dt curve is initially positive and increases with time. The instantaneous work
increases to a maximum and then goes to zero when the strain is a maximum. This occurs
at a time t=(p/2+ d)/v. Note also that this time is not exactly a quarter cycle (t= p/2v)
as usually assumed. Also, recall that the stress and strain do not reach a maximum at the
same time (except for d=0). As time progresses, dW/dt becomes negative. The dW/dt
curve decreases to a minimum and then goes to zero at t= p/v. The stress is zero at this
time; the strain lags behind by d. In the second half cycle, the shape of the dW/dt curve
is like the first half cycle, but the stress and strain curves are negative. The instantaneous
work is zero when the strain is a minimum, at t=(3p/2+ d)/v, and is again zero when
the stress is zero, at t=2p/v.

The areas under the dW/dt curve represents work. To determine the work, equation (7)
is integrated, yielding

W=(s0g0/2)[cos d sin2 (vt)− sin d sin (vt) cos (vt)+vt sin d]=ba, (8)

where the limits of integration will be chosen in different ways for particular cases. The
energy dissipated in a complete cycle, DW, is determined by evaluating equation (8) over
the limits 0 and 2p/v,

DW= ps0g0 sin d. (9)

This result has been reported many times [1–9]. The shaded areas labeled W+ (above the
time axis) are the work done on the material (Figure 1). Some of this work is stored in
the material and some is dissipated in the form of heat. The shaded areas labelled W−

Figure 1. Stress, strain, and instantaneous work as a function of reduced time for d=0·05: · · · · , s/s0; ----,
g/g0; ——, (s0g0)−1 (dW/dt).



. .   . 268

(below the time axis) are the work done by the material and therefore represents the stored
energy. The difference between the work done (W+) and the work stored (W−) is the work
dissipated. In the limit of a perfectly elastic material (d=0), all of the work done on the
material is stored and returned, therefore 2W+ =2W−. In the limit of a perfect viscous
material (d= p/2), all the work is dissipated as heat and DW= ps0g0. Under this
condition, there is no work stored (W− =0), but only work done.

Note that the usual evaluation of work stored is approximated by integrating the first
quarter cycle. This integration approximates the work done not the work stored, as shown
in Figure 1. The two values are very close when the loss angle is small but differ
significantly for high loss materials.

The maximum stored energy is evaluated in the following manner. Following the usual
interpretation of maximum stored energy to include only the compression phase and not
the tension phase, the quantity to be determined is W− in the first half cycle only. Thus
the limits to be used in equation (8) are (p/2+ d)/v and (p/v), and the maximum stored
energy is

Ws =(s0g0/2)[(p/2− d) sin d−cos d]. (10)

From this result, it follows that the specific damping capacity for arbitrary d is

DW/Ws =2p tan d/[(p/2− d) tan d−1]. (11)

This equation is valid for arbitrary d. For d�1, equation (11) reduces to equation (1)
except for the sign. Equation (11) yields a negative value for specific damping capacity
because work stored is negative work. Equation (1) was stated to be for work stored but
it was work done that was used and work done is positive work. In the limit as d

approaches 0, DW/Ws is zero and in the limit as d approaches p/2, DW/Ws increases to
infinity.

Having the exact relation between specific damping capacity and d, one can now
determine the range of validity of the small d approximation. For d=0·01, the error in
approximating equation (11) by equation (1) is 1·6%. Typical loss angle measurements
have this much uncertainty, therefore a value of d=0·01 is a reasonable upper limit for
the validity of equation (1).

To illustrate of the effect of high loss material on the work, the equations used in Figure
1 are replotted for d=0·5 in Figure 2. The area of the stored energy (W−) is much smaller
than the work done (W+). Hence, in addition to the sign difference, there is a significant
error in equating work done with work stored. The results in Figure 2 also illustrate the
error in assuming that the maximum work done occurs at a quarter cycle (p/2v) rather
than (p/2+ d)/v. Even if the correct limit was used, only half of the energy stored per
cycle is accounted for by equation (11).

3. NEW DEFINITION FOR SPECIFIC DAMPING CAPACITY

There are two drawbacks of the usual definition of specific damping capacity. The
definition of DW is straightforward: it is the energy absorbed in one cycle. However, some
difficulties arise with Ws , especially when considering high loss materials. First, the usual
evaluation of the work stored is in fact not the work stored but the work done. This leads
to significant error for high loss materials. Second, it appears inconsistent that DW is
evaluated for a complete cycle whereas Ws is evaluated only in a quarter cycle.
Qualitatively, this corresponds to considering the stored energy in the compression phase
of the cycle and neglecting the energy stored in the tension phase. This omission leads to
a factor of two since the energy stored in compression is equal to the energy stored in
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Figure 2. Stress, strain, and instantaneous work as a function of reduced time for d=0·5: · · · · , s/s0; ----,
g/g0; ——, (s0g0)−1 (dW/dt).

tension. Third, the form ‘‘DW/W’’ implies a fractional quantity, less than one. But since
stored energy can approach zero, as in a liquid, the specific damping capacity can be
greater than one and in fact can approach infinity. This definition can lead to some
confusion, though admittedly if one follows the definition correctly, there is no problem.
To make the definition agree with what is intuitively assumed about specific damping
capacity, a more logical definition would be to use Wd in the definition rather than Ws .
Then the definition of specific damping capacity would be the work absorbed per cycle
divided by the work done per cycle. This definition represents the fraction of the work done
that is converted to heat.

Using the analysis already presented, the new definition can be evaluated easily. Wd is
the total work done per cycle and consists of W+ in the first half cycle plus W+ in the
second half cycle. W+ for the first half cycle is determined by evaluating equation (8) from
0 to (p/2+ d)/v which yields

W+ =(s0g0/2)[cos d+(p/2+ d) sin d]. (12)

W+ for the second half cycle is determined by evaluating equation (8), again, using limits
from p/v to (3p/2+ d)/v which yields an equation identical to equation (12). The two
areas are equal, so that Wd =2W+. From this it follows that the new definition for specific
damping capacity for arbitrary d yields the relation

DW/Wd = p tan d/(1+ (p/2+ d) tan d). (13)
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For d�1, equation (13) reduces to

DW/Wd 1 p tan d, d�1, (14)

which is a factor two less than equation (1). This difference is due to defining Wd for a
complete cycle rather than for a quarter cycle. In the limit as d approaches 0, DW/Wd is
zero and in the limit as d approaches p/2, DW/Wd is 1, which is consistent with the new
definition of specific damping capacity as the fraction of the total energy converted to heat.
The upper limit for the validity of equation (14), approximating equation (13), is d=0·01,
the same as for the earlier definition of specific damping capacity.

A plot comparing the two approximations of the usual definition of specific damping
capacity (equations (1) and (2)) with the exact value of the usual definition (equation (11))
and the exact value of the new definition (equation (13)) as functions of d is shown in
Figure 3. The approximations are plotted beyond their range of validity (dQ 0·01) but they
are sometimes used in this range, partly because the range of validity has not previously
been determined. As can be seen, for d greater than 0·16, equations (1) and (2) are greater
than one. Equation (13) asymptotically approaches one as d increases to infinity.

4. HYSTERESIS

The specific damping capacity has sometimes been determined from stress–strain
hysteresis measurements rather than from time domain measurements. The analysis carried
out here can be readily translated to hysteresis measurements.

Figure 3. Specific damping capacity as a function of loss angle: · · · · , equation (1); ----, equation (2); — · · —,
equation (11), ——, equation (13).
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Figure 4. Stress–strain hysteresis loop for d=0·5.

The hysteresis loop is analyzed using equation (13) to determine DW/Wd . Since it is well
known that DW is the area within the hysteresis loop [8], only Wd is needed to determine
the specific damping capacity. A hysteresis loop is obtained by plotting the stress (equation
(3)) versus strain (equation (4)) as shown in Figure 4 for d=0·5. As was shown above,
Wd is the sum of the two W+ areas. By relating the two W+ areas from the time domain
results of Figure 2 to the hysteresis plot of Figure 4, Wd is easily determined. The W+ area
in the first half cycle (Figure 2) begins when the stress is zero (t=0) and ends when the
reduced strain (g/g0) is one. Applying these conditions to Figure 4, the first W+ area is
clearly the shaded area above the strain axes. The W+ in the second half cycle (Figure 2)
begins when the stress is zero (t= p/2) and ends when the reduced strain is negative one.
The second W+ (Figure 4) is the shaded area below the strain axes. The two areas were
numerically integrated and found to be equal to the results of equation (13) (analytical
solution to the area in the time domain) evaluated at d=0·5. By analyzing the hysteresis
loop in the above manner, the specific damping capacity will have a range from 0 to 1,
as expected.

5. CONCLUSIONS

Based on the analysis reported here, the following conclusions were reached:
(1) The usual relation of specific damping capacity and loss angle is only valid for

dQ 0·01.
(2) For arbitrary loss angle, specific damping capacity defined for work stored in the

first half cycle is DW/Ws =2p tan d/[(p/2− d) tan d−1].
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(3) For arbitrary loss angle, specific damping capacity defined for work done per cycle
is DW/Wd = p tan d/[1+ (p/2+ d) tan d], which has the desirable property of taking
values between zero and one.

(4) The results obtained for time domain measurements can be directly transferred to
stress-strain hysteresis measurements.
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